$\mathbf{1}$	Find prime numbers and test numbers to see if they are prime	
a	Write down all the prime numbers between 50 and 60	
b	Steve thinks that 143 is a prime number.	
	Steve is wrong. Explain why.	

$\mathbf{2}$	Find common factors of numbers	
a	Find all the common factors of 20 and 24	
b	Is 2 a common factor of 30 ? Justify your answer.	

$\mathbf{3}$	Find the highest common factor of numbers in simple cases, including co-prime examples	
a	Find the highest common factor of 30 and 48	
b	Is the following statement always true, sometimes true, or never true?	
	The highest common factor of two numbers is 1	

$\mathbf{4}$	Find common multiples of numbers	
a	Find a common multiple of 12 and 8	
b	Jane says '9 is a common multiple of 72 and 54 '.	
	Do you agree with Jane? Explain why.	

$\mathbf{5}$	Recognise and solve problems involving the lowest common multiple	
a	A pattern of flashing lights uses three colours. A red light flashes every 4 seconds, a blue light flashes every 6 seconds and a yellow light flashes 8 seconds. All three lights flash together at the start of the display. How long is it until all three lights flash together again?	
b	What is wrong with this statement, and how can you correct it?	
	To find the lowest common multiple of two numbers, multiply the numbers together	

$\mathbf{6}$	Use linear (arithmetic) number patterns to solve problems	
\mathbf{a}	Find the missing numbers in this linear sequence: $3, \ldots, \ldots, 15,19$	
\mathbf{b}	Jonas is asked to continue the linear number sequence that starts $2,4, \ldots$	
	He writes $2,4,8,16,32, \ldots$	
	Comment on Jonas' sequence.	

7	Recognise and use triangular numbers		
a	Write down the eighth triangular number		
b	Marek draws this diagram. He says, 'My diagram shows that 12 is a triangular number'. Do you agree with Marek? Explain your answer.		

8	Recognise and use square and cube numbers	
a	1 is both a square number and a cube number. What is the next number that is both a square number and a cube number?	
b	What is wrong with this statement, and how can you correct it?	
$\qquad 5 \times 5=25.25 \times 25=625$. Therefore 625 is a cube number.		

$\mathbf{9}$	Read, write and evaluate powers	
\mathbf{a}	Evaluate 2^{6}	
\mathbf{b}	What is wrong with this statement, and how can you correct it?	
		$\sigma^{3}=6 \times 3$

$\mathbf{1 0}$	Define and find square roots (including using the $\sqrt{ }$ symbol)	
\mathbf{a}	Evaluate $\sqrt{81}$	
\mathbf{b}	Is the following statement always true, sometimes true, or never true?	
	To find the square root of a number, divide by 2	

11 Define and find cube roots (including using the $\sqrt[3]{ }$ symbol), including the use of a scientific calculator a \quad Evaluate $\sqrt[3]{216}$
b Is the following statement always true, sometimes true, or never true?
To find the cube root of a number, divide by 3

12 Define and find other roots (including using the a $\sqrt{ }$ symbols), including the use of a scientific calculator
a \quad Evaluate $\sqrt[4]{10000}$
b Lindsey writes, $\sqrt[5]{243}=243 \div 5=48.6$
Lindsey is wrong. Correct her solution.

	Key learning point	©	-	©	©
1	Find prime numbers and test numbers to see if they are prime				
2	Find common factors of numbers				
3	Find the highest common factor of numbers in simple cases, including co-prime examples				
4	Find common multiples of numbers				
5	Recognise and solve problems involving the lowest common multiple				
6	Use linear (arithmetic) number patterns to solve problems				
7	Recognise and use triangular numbers				
8	Recognise and use square and cube numbers				
9	Read, write and evaluate powers				
10	Define and find square roots (including using the $\sqrt{ }$ symbol)				
11	Define and find cube roots (including using the $\sqrt[3]{ }$ symbol), including the use of a scientific calculator				
12	Define and find other roots (including using the a $\sqrt{ }$ symbols), including the use of a scientific calculator				

Top three improvements for me to make

1a	53,59	
1b	Reason; e.g. $143=13 \times 11$	
2a	$1,2,4$	
2b	No, and reason; e.g. a common factor must be common to at least two numbers	
3a	6	
3b	Sometimes true, ideally with examples	
4a	Any multiple of 24	
4b	No, and reason; e.g. it is a common factor	
5a	24 seconds	
5b	Explanation; e.g. this will only give the LCM is some cases.	
6a	7, 11	
6b	Valid comment; e.g. it is not linear	
7a	36	
7b	No, and explanation; e.g. it doesn't show $1+2+3+\ldots$	
8a	64	
8b	Explanation; e.g. it shows 5^{4}, the second calculation should be 25×5	
9a	64	
9b	Explanation; e.g. it should be $6 \times 6 \times 6$	
10a	9	
10b	Sometimes true (but only by fluke since $\sqrt{4}=4 \div 2=2$)	
11a	6	
11b	Never true	
12a	10	
12b	3	

