$\mathbf{1}$	Use Pythagoras' theorem to find the length of a given diagonal in a cuboid
\mathbf{a}	Calculate the length of $A C$
Her answer is 12.6 to 1 decimal place.	
Do you agree with Jemima? Explain your answer.	

2	Use Pythagoras' theorem to find any length in a cuboid		
a	In this cuboid, $B H=5 \sqrt{5}$ Calculate the length of $B C$		
b	In this cuboid, $C E=\sqrt{314}$ Glenn works out the length of $F G$ as follows: $\sqrt{314-15^{2}}=\sqrt{314-225}=\sqrt{89}$ Glenn is wrong. Explain why.		

3 Use Pythagoras' theorem to find missing lengths in other three dimensional figures
a Find the length of x in this frustum of a cone

b Miles is asked to find the length of x in this frustum of a cone.
He gives the answer 15.6
Do you agree with Miles? Explain why.

4	Use Pythagoras' theorem to solve problems involving three dimensional figures
$\mathbf{a} \quad$ Find the exact volume of this frustum of a cone.	
b Alison is asked to find the surface are of this frustum of a cone.	
uses this to find the surface area as follows:	
Alison is wrong. Explain why.	

5 Use trigonometry to find the angle between a line and a plane
a Calculate angle $A G D$.
Give your answer to 1 decimal place.

b Michael is asked to calculate angle $E B H$
He gives the answer 71.9° to 3 significant figures.
Do you agree with Michael? Explain why.

$\mathbf{6}$	Solve simple problems involving missing lengths and angles in three dimensional figures
\mathbf{a}	$A B C D$ is a square X is the midpoint of $B D$ $E X=8 \mathrm{~cm}$ $B E=10 \mathrm{~cm}$
	Calculate the angle $B E D$. Give your answer to 1 decimal place.
b Milly is told that angle $A G D=17.6^{\circ}$ to 1 decimal place.	
	She works out that $A D=29.7 \mathrm{~cm}$
Milly is wrong. Explain why.	

7 Solve more complex problems involving missing lengths and angles in three dimensional figures
a In this cuboid, angle $A G H=59^{\circ}$.
Calculate the value of x.

b $A B C D E F G H$ is a cube.
Phil is asked to work out the size of angle $A B H$. He says,
'This is not possible as I need to know the length of the sides of the cube'

Do you agree with Phil? Explain why.

8 Know and use the sine rule in simple cases
a Calculate the value of x.
Give your answer correct to 3 significant figures.

b Isha is asked to calculate the value of x.
She writes

$$
\frac{9}{\sin 55^{\circ}}=\frac{x}{\sin 85^{\circ}}
$$

Isha is wrong. Explain why.

10 Use the sine rule to find a missing angle(s) in a non-right angled triangle
a Calculate the value of x.

Give your answer correct to 3 significant figures.

b $\quad \operatorname{Jim}$ is asked to calculate the value of x.
He gives the answer 2.21.

Jim is wrong. Explain why.

11 Know and use the cosine rule in simple cases
a Complete the following statement about triangle PQR.

$$
ـ^{2}=ـ^{2}+\ldots^{2}-2 \times \ldots \times \ldots \times \cos x^{\circ}
$$

b Vicki is asked to calculate the value of x. She writes

$$
\begin{aligned}
& x^{2}=8^{2}+9^{2}-2 \times 8 \times 9 \times \cos 37^{\circ} \\
& x^{2}=64+81-144 \times \cos 37^{\circ} \\
& x^{2}=64+81-144 \times \cos 37^{\circ} \\
& x^{2}=1 \times \cos 37^{\circ}
\end{aligned}
$$

Do you agree with Vicki? Explain why.

13 Use the cosine rule to find a missing angle in a non-right angled triangle
a Calculate the value of x.

Give your answer correct to 3 significant figures.

b Pat is asked to calculate the value of x. She writes:

$$
\begin{aligned}
& 11^{2}=10^{2}+7^{2}-2 \times 10 \times 7 \times \cos x^{\circ} \\
& 121=100+49-140 \times \cos x^{\circ} \\
& 121=9 \times \cos x^{\circ} \\
& 0.074 \ldots=\cos x^{\circ} \\
& x=85.7^{\circ}
\end{aligned}
$$

Do you agree with Pat? Explain why.

14 Solve complex problems involving bearings
a A boat leaves a port and sails on a bearing of 060° for 200 kilometres.
It then turns and sails on a bearing of 160° for 300 kilometres.
The boat then returns directly to the port. What is the distance travelled on the final part of the journey?
Give your answer to the nearest kilometre.
b Jos is given the following problem:

A drone flies on a bearing of 075° for 250 metres. It then turns and flies on a bearing of 135° for 350 metres.
The drone then lands. What is the bearing of the drone from its start point?
He gives the answer is 070°.
Jos is wrong. Explain why.

15 Know and use area $=1 / 2 a b$ sinC to calculate the area of any triangle

a Calculate the area of the triangle $A B C$.
Give your answer correct to 3 significant figures.

b Roy is asked to find the area of triangle $P Q R$.
He works out the answer $-5.55 \mathrm{~cm}^{2}$ to two decimal places.

Roy knows he has made a mistake as the answer cannot be negative. Explain the mistake he has made.

16 Know and use area $=1 / 2 a b$ sinC to calculate sides or angles of any triangle
a The area of triangle $A B C$ is $118 \mathrm{~cm}^{2}$.
Find the value of x.
Give your answer correct to 3 significant figures.

b Pete is told that the area of triangle $L M N$ is $59.1 \mathrm{~cm}^{2}$.

He is asked to calculate the value of x. Pete writes:

$$
\begin{aligned}
& 59.1=\frac{1}{2} \times 8 \times 15 \times \cos x \\
& 0.985=\cos x \\
& x=9.94
\end{aligned}
$$

Do you agree with Pete? Explain why.

	Key learning point	\because	Θ	\because
$\mathbf{1}$	Use Pythagoras' theorem to find the length of a given diagonal in a cuboid			
$\mathbf{2}$	Use Pythagoras' theorem to find any length in a cuboid			
$\mathbf{3}$	Use Pythagoras' theorem to find missing lengths in other three dimensional figures			
$\mathbf{4}$	Use Pythagoras' theorem to solve problems involving three dimensional figures			
$\mathbf{5}$	Use trigonometry to find the angle between a line and a plane			
$\mathbf{6}$	Solve simple problems involving missing lengths and angles in three dimensional figures			
$\mathbf{7}$	Solve more complex problems involving missing lengths and angles in three dimensional figures			
$\mathbf{8}$	Know and use the sine rule in simple cases			
$\mathbf{9}$	Use the sine rule to find a missing side in a non-right angled triangle			
$\mathbf{1 0}$	Use the sine rule to find a missing angle(s) in a non-right angled triangle			
$\mathbf{1 1}$	Know and use the cosine rule in simple cases			
$\mathbf{1 2}$	Use the cosine rule to find a missing side in a non-right angled triangle			
$\mathbf{1 3}$	Use the cosine rule to find a missing angle in a non-right angled triangle			
$\mathbf{1 4}$	Solve complex problems involving bearings			
$\mathbf{1 5}$	Know and use area $=1 / 2 a b$ sinC to calculate the area of any triangle			
$\mathbf{1 6}$	Know and use area $=1 / 2 a b$ sinC to calculate sides or angles of any triangle			

Top three improvements for me to make

1a	awrt 10.4	
	No, she has misused a Pythagorean triple ($\mathrm{CH} \neq 12$)	
2a	5	
2b	e.g. the correct answer is 5	
3a	5	
3b	No, the answer is 13	
4a	312π	
4b	She has not included the circular faces	
5 a	awrt 17.1°	
5b	No, this is angle EHB	
6a	73.7°	
6b	Correct explanation. $\mathrm{AD}=3 \mathrm{~cm}$.	
7 a	4.5	
7b	No. The answer would be the same for any side length.	
8 a	7.32	
8b	$\frac{9}{\sin 55^{\circ}}=\frac{x}{\sin 40^{\circ}}$	
9a	11.4	
9b	No, you cannot cancel 'sin'	
10a	40.9	
10b	The correct answer is 56.9	
11a	$13^{2}=9^{2}+15^{2}-2 \times 9 \times 15 \times \cos x^{\circ}$ or $13^{2}=15^{2}+9^{2}-2 \times 15 \times 9 \times \cos x^{\circ}$	
11b	Order of operations applied incorrectly	
12a	5.37	
12b	It should be $6^{2}=\ldots$	
13a	34.5	
13b	Order of operations applied incorrectly	
14a	330 km	
14b	The correct answer is 110°. He has given the bearing of the start point from the current position.	
15a	$20.6 \mathrm{~cm}^{2}$	
15b	The answer is 31.4 (calculator is in radians mode)	
16a	18	
16b	No, he has used 'cos' when it should have been 'sin'	

