$\mathbf{1}$	Write a number as a product of its prime factors	
a	Write 120 as a product of its prime factors.	
b	Kathryn is asked to write 60 as a product of its prime factors. Here is her work.	

2 Use prime factorisations to find the highest common factor of two numbers
a Find the highest common factor of 72 and 180.
b Tom is asked to find the highest common factor of 72 and 168. Here is his working.

$72=2 \times 2 \times 2 \times 3 \times 3$	and	$168=$
Prime factors of 72		Prime factors of 168

The highest common factor of 72 and 168 is 504

Tom is wrong. Explain why.

3 Use prime factorisations to find the lowest common multiple of two numbers

a Find the lowest common multiple of 45 and 54.
b Carol is asked to find the lowest common multiple of 48 and 72.
She writes

$$
48 \times 72=3456
$$

Do you agree with Carol? Explain why.

4 Round numbers to one or two significant figures

a Round 43492 to two significant figures.
b Justin rounds 0.0763 to one significant figure.
His answer is 0.1.

Do you agree? Explain why.

5 Round numbers to one and two decimal places

a Use your calculator to work out $3.2+23.6 \div 7$.
Round your answer to two decimal places.
b Aylsa is asked to round 902.449 to one decimal place.

She writes

$$
902.449 \rightarrow 902.45 \rightarrow 902.5
$$

Aylsa is wrong. Explain why.

6 Use standard form to write large numbers
a Write 3.27×10^{5} as an ordinary number.
b Lance writes $5.4 \times 10^{7}=540000000$.
Do you agree with Lance? Explain why.

7 Use standard form to write small numbers

a Write 0.000188 in standard form.
b Jane writes $0.000041=4.1 \times 10^{-4}$
Jane is wrong. Explain her mistake.

	Key learning point	$: \dot{O}$	Θ	
$\mathbf{1}$	Write a number as a product of its prime factors			
$\mathbf{2}$	Use prime factorisations to find the highest common factor of two numbers			
$\mathbf{3}$	Use prime factorisations to find the lowest common multiple of two numbers			
$\mathbf{4}$	Round numbers to one or two significant figures			
$\mathbf{5}$	Round numbers to one and two decimal places			
$\mathbf{6}$	Use standard form to write large numbers			
$\mathbf{7}$	Use standard form to write small numbers			

Top three improvements for me to make

1a	$2 \times 2 \times 2 \times 3 \times 5$	
1b	15 is not a prime number - you don't just divide by 2 until you run out of possibilities	
2a	36	
2b	504 is the LCM. The HCF is the product of the numbers in the intersection; i.e. 24.	
3a	270	
3b	The lowest common multiple of only sometimes the product of the two numbers. The LCM is actually 144 in this case. [Note: It is always true that LCM(a, b) $=\mathbf{a} \times \mathrm{b} \div \mathrm{HCF}(\mathrm{a}, \mathrm{b})]$	
4a	43000	
4b	e.g. It should be 0.08	
5a	6.57	
5b	e.g. It should be 902.4. You only check the next column along.	
6a	327000	
6b	$5.4 \times 10^{7}=54000000$	
7a	1.88×10^{-4}	
7b	$0.000041=4.1 \times 10^{-5}$	

