Name:
BAM Indicator: Simplify surds, including rationalising the denominator of a surd expression

1. Lily writes

$$
\sqrt{ } 48=\sqrt{ } 16 \times 3=4 \times 3=12
$$

Lily is incorrect.
Explain what Lily has done wrong. Correct her answer.
2. a) Simplify fully:
i. $\sqrt{50}$
ii. $\sqrt{108}$
iii. $\sqrt{\frac{36}{64}}$
iv. $\sqrt{\frac{7}{25}}$
b) Rationalise the denominator of these surds. Write the answers in their simplest form.
i. $\frac{12}{2 \sqrt{3}}$
ii. $\frac{12}{5-\sqrt{3}}$
iii. $\frac{12+\sqrt{2}}{5-\sqrt{3}}$
3. Find the values of p, q and r that make this statement true:

$$
(p+\sqrt{5})(6-\sqrt{q})=13+r \sqrt{5}
$$

$$
p=
$$

\qquad
$q=$ \qquad

$$
r=
$$

\qquad
4. Find the exact value of x.

Give your answer in its simplest form.

5. State whether the following statements are always true, sometimes true or never true. Justify your answer in each case.
a) $\sqrt{a+b}=\sqrt{a}+\sqrt{b}$
b) $\sqrt{a \times b}=\sqrt{a} \times \sqrt{b}$
c) $\sqrt{a^{2}+b^{2}}=a+b$
d) $(a-\sqrt{b})^{2}=a^{2}-b$

Overall, I think my success level is:	Low

$F=$ Fluency $\quad R=$ Reasoning $\quad P=$ Problem-solving $\quad A=$ Application $\quad M=$ Misconception

Q	SURDS	$\odot{ }^{\circ}$	0
	I can simplify a surd		
	I can rationalise the denominator of a fraction when it is of the form $a \sqrt{b}$		
	I can rationalise the denominator of a fraction when it is of the form $a \pm \sqrt{b}$		
Improvements I could make:			
Mathematical presentation	Method	Accuracy	Units

