Name:
BAM Indicator: Apply trigonometry in two dimensions

1. a) Find the missing lengths marked $x$ in these diagrams:
i)

ii)

b) Find the missing angles marked $\theta$ in these diagrams:
i)

ii)

2. There are two mistakes made in the working below.

Describe the mistakes that have been made. Find the correct solution.

3. A ladder, 6 metres long, rests against a wall. The foot of the ladder is 2.5 metres from the base of the wall. What angle does the ladder make against the ground?
4. The diagram shows the cross-section of a building. $C D$ is a ledge half way up.

Amy is standing at point $A$ looking at the building. She measures $A B=100$ metres, $\angle C A B=31^{\circ}$ and $\angle E A B=42^{\circ}$.
Calculate the length of $C D$.

$\qquad$ m
5. Jason says:

> I only need to know two pieces of information about a triangle and I can find any missing side or angle.

Do you agree or disagree? Explain why.

| Overall, I think my success level is: | Low $\quad$ High |
| :--- | :---: |

$F=$ Fluency $\quad R=$ Reasoning $\quad P=$ Problem-solving $\quad A=$ Application $\quad M=$ Misconception

| Q | TRIGONOMETRY | $\odot$ | $\otimes$ |
| :--- | :--- | :---: | :---: |
|  | I can correctly label a triangle so as to select the appropriate trigonometric ratio |  |  |
|  | I can find missing sides of right-angled triangles using trigonometry |  |  |
|  | I can find missing angles of right-angled triangles using trigonometry |  |  |
|  | I can apply trigonometry to problems involving multiple triangles |  |  |
| Improvements I could make: |  |  |  |
| Mathematical presentation |  |  |  |

