ANGLES

Name:
BAM Indicator: Solve missing angle problems involving triangles, quadrilaterals, angles at a point and angles on a straight line

1. Find the missing angle (?) in each diagram
b)

\qquad
? ${ }^{\circ}$
? $=$ \qquad \circ
c)

d)

? $=$ \qquad ${ }^{\circ}$ \qquad \circ
2. Here is a diagram of a bike frame. Find the size of the angles labelled a and b.

$a=$ \qquad
$b=$
\qquad
3. An isosceles triangle has an angle of 30°. What could the size of the other two angles be?
\qquad ${ }^{\circ}$ and \qquad -
4. Look at the diagram on the right.

Is the following statement always true, sometimes true, or never true? Explain your answer.

$$
a+b=180^{\circ}
$$

5. Look at the diagram on the right.

Jan thinks that $p=40$. Do you agree? Explain your answer.

Overall, I think my success level is:	Low O High

$F=$ Fluency $\quad R=$ Reasoning $\quad P=$ Problem-solving $\quad A=$ Application $\quad M=$ Misconception

Q	ANGLES	©	0
	I can calculate a missing angle at a point on a straight line		
	I can calculate a missing angle at a point		
	I can calculate a missing angle in a triangle		
	I can calculate a missing angle in a quadrilateral		
	I can calculate a missing angle in an isosceles triangle		
Improvements I could make:			
Mathematical presentation			

