ANGLES

Name:

<u>BAM Indicator:</u> Solve missing angle problems involving triangles, quadrilaterals, angles at a point and angles on a straight line

1. Find the missing angle (?) in each diagram

a)

b)

? = _____°

? = _____ °

c)

d)

? = _____°

? = °

2. Here is a diagram of a bike frame. Find the size of the angles labelled a and b.

Α

a =

b =

3.	An isosceles triangle has an angle of $30^{\circ}.$	What could the size of the other two angles
	be?	

 $^{\circ}$ and ___

Is the following statement always true, sometimes true, or never true? Explain your answer.

 $a + b = 180^{\circ}$

5. Look at the diagram on the right.

Jan thinks that p = 40. Do you agree? Explain your answer.

Μ

R

Overall, I think my success level is:

High 0000

F = Fluency

R = Reasoning P = Problem-solving A = Application

M = Misconception

Q	ANGLES	©	(3)
	I can calculate a missing angle at a point on a straight line		
	I can calculate a missing angle at a point		
	I can calculate a missing angle in a triangle		
	I can calculate a missing angle in a quadrilateral		
	I can calculate a missing angle in an isosceles triangle		

Improvements I could make:

Mathematical presentation	Method	Accuracy	Units