Stage Overview

7-11 Pathway							
Minimum expected standard at end of KS1	Exceeding minimum expected standard at end of KS1						
Stage 2	Stage 3						
Stage 3	Stage 4						
Stage 4	Stage 5						
Stage 5	Stage 6						

11-16 P		
Below expected standard at end of KS2	Expected standard at end of KS2	
Stage 6	Stage 7	Year 7
Stage 7	Stage 8	Year 8
Stage 8	Stage 9	Year 9
Stage 9	Stage 10	Year 10
Stage 10 Lite	Stage 11	Year 11

		•
	nı	τ.
0		

01111	
Numbers and the number system	
Calculating	
Checking, approximating and estimating	
Counting and comparing	
Visualising and constructing	
Investigating properties of shapes	
Algebraic proficiency: tinkering	
Exploring fractions, decimals and percentages	
Proportional reasoning	
Pattern sniffing	
Measuring space	
Investigating angles	
Calculating fractions, decimals and percentages	
Solving equations and inequalities	
Calculating space	
Mathematical movement	
Presentation of data	
Measuring data	

Unit names chosen based on mathematical habits of mind (Cuoco, 1996). Organised to ensure any instances of prerequisite knowledge within a year are covered in the first term. All stages align closely throughout the year.

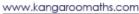
Unit	Key 'Build a Mathematician' (BAM) Indicators
imbers and the number system	Use positive integer powers and associated real roots
Calculating	Apply the four operations with decimal numbers
Checking, approximating and estimating	Write a quantity as a fraction or percentage of another
Counting and comparing	 Use multiplicative reasoning to interpret percentage change
isualising and constructing	 Add, subtract, multiply and divide with fractions and mixed numbers
vestigating properties of shapes	Check calculations using approximation, estimation or inverse operations
lgebraic proficiency: tinkering	 Simplify and manipulate expressions by collecting like terms
xploring fractions, decimals and percentages	 Simplify and manipulate expressions by multiplying a single term over a bracket
oportional reasoning	Substitute numbers into formulae
attern sniffing	Solve linear equations in one unknown
feasuring space	 Understand and use lines parallel to the axes, y = x and y = -x
vestigating angles	Calculate surface area of cubes and cuboids
alculating fractions, decimals and percentages	Understand and use geometric notation for labelling angles, lengths, equal lengths and parallel
olving equations and inequalities	lines
Calculating space	
Mathematical movement	
resentation of data	
Measuring data	
	Stage 7 BAM Progress Tracker Shee

The first part of a framework for assessing without levels: 13 '**Build a Mathematician** (**BAM**)' **indicators** for each year are chosen to represent the minimum expected outcomes by the end of the stage, critical in developing conceptual understanding and essential for pupils to make progress to the next stage

Stage 7: Page 1

- Numbers and the number system Calculating
- Checking, approximating and estimating
- Counting and comparing
- Visualising and constructing
- Investigating properties of shapes
- Algebraic proficiency: tinkering
- Exploring fractions, decimals and percentages
- Proportional reasoning
- Pattern sniffing
- Measuring space
- Investigating angles
- Calculating fractions, decimals and percentages
- Solving equations and inequalities
- Calculating space
- Mathematical movement
- Presentation of data
- Measuring data

Key 'Build a Mathematician' (BAM) Indicators	Essential knowledge
Use positive integer powers and associated real roots	Know the first 6 cube numbers
Apply the four operations with decimal numbers	Know the first 12 triangular numbers
 Write a quantity as a fraction or percentage of another 	 Know the symbols =, ≠, <, >, ≤, ≥
Use multiplicative reasoning to interpret percentage change	Know the order of operations including brackets
 Add, subtract, multiply and divide with fractions and mixed numbers 	Know basic algebraic notation
 Check calculations using approximation, estimation or inverse operations 	 Know that area of a rectangle = I × w
 Simplify and manipulate expressions by collecting like terms 	 Know that area of a triangle = b × h ÷ 2
 Simplify and manipulate expressions by multiplying a single term over a bracket 	 Know that area of a parallelogram = b × h
Substitute numbers into formulae	• Know that area of a trapezium = ((a + b) ÷ 2) × h
Solve linear equations in one unknown	• Know that volume of a cuboid = I × w × h
 Understand and use lines parallel to the axes, y = x and y = -x 	Know the meaning of faces, edges and vertices
Calculate surface area of cubes and cuboids	Know the names of special triangles and quadrilateral
Understand and use geometric notation for labelling angles, lengths, equal lengths and paralle	Know how to work out measures of central tendency
lines Stage 7 BAM Pg	Know how to calculate the range


Alongside the BAM indicators, essential knowledge lists the facts that students need to know in order to make progress in their mathematics

Stage 7: Page 1

Unit	Lessons	Key 'Build a Mathematician' (BAM) Indicators	Essential knowledge
Numbers and the number system	12	Use positive integer powers and associated real roots	Know the first 6 cube numbers
Calculating	16	Apply the four operations with decimal numbers	Know the first 12 triangular numbers
Checking, approximating and estimating	3	Write a quantity as a fraction or percentage of another	 Know the symbols =, ≠, <, >, ≤, ≥
Counting and comparing	9	Use multiplicative reasoning to interpret percentage change	 Know the order of operations including brackets
Visualising and constructing	4	Add, subtract, multiply and divide with fractions and mixed numbers	 Know basic algebraic notation
Investigating properties of shapes	5	Check calculations using approximation, estimation or inverse operations	 Know that area of a rectangle = I × w
Algebraic proficiency: tinkering	8	Simplify and manipulate expressions by collecting like terms	 Know that area of a triangle = b × h ÷ 2
Exploring fractions, decimals and percentages	4	Simplify and manipulate expressions by multiplying a single term over a bracket	 Know that area of a parallelogram = b × h
Proportional reasoning	4	Substitute numbers into formulae	 Know that area of a trapezium = ((a + b) ÷ 2) × h
Pattern sniffing	3	Solve linear equations in one unknown	 Know that volume of a cuboid = I × w × h
Measuring space	7	 Understand and use lines parallel to the axes, y = x and y = -x 	 Know the meaning of faces, edges and vertices
Investigating angles	3	Calculate surface area of cubes and cuboids	Know the names of special triangles and quadrilaterals
Calculating fractions, decimals and percentages	15	Understand and use geometric notation for labelling angles, lengths, equal lengths and parallel	Know how to work out measures of central tendency
Solving equations and inequalities	5	lines	Know how to calculate the range
Calculating space	5		
Mathematical movement	7 9		
Presentation of data	6		
Measuring data	7		
Total:	123	Stage 7 BAM Progress Tracker Sheet	

The number of **hours** for a unit based on based on 7 maths lessons per fortnight, with at least 35 'quality teaching' weeks per year. However, the curriculum model in your school, the place of deliberate practice, and the time it takes students to master concepts will all influence the reality.

Unit	Lessons	Key 'Build a Mathematician' (BAM) Indicators		Essential knowledge
Numbers and the number system	12	Use positive integer powers and associated real roots		Know the first 6 cube numbers
Calculating	16	Apply the four operations with decimal numbers		Know the first 12 triangular numbers
Checking, approximating and estimating	3	Write a quantity as a fraction or percentage of another		 Know the symbols =, ≠, <, >, ≤, ≥
Counting and comparing	9	Use multiplicative reasoning to interpret percentage change		 Know the order of operations including brackets
Visualising and constructing	4	Add, subtract, multiply and divide with fractions and mixed numbers		Know basic algebraic notation
Investigating properties of shapes	5	Check calculations using approximation, estimation or inverse operations		 Know that area of a rectangle = I × w
Algebraic proficiency: tinkering	8			 Know that area of a triangle = b × h ÷ 2
Exploring fractions, decimals and percentages	4	Suggested 'Maths Calendar' for		 Know that area of a parallelogram = b × h
Proportional reasoning	4 .	Suggested 'Maths Calendar' for		 Know that area of a trapezium = ((a + b) ÷ 2) × h
Pattern sniffing	3	the year based on 25 weeks of		 Know that volume of a cuboid = I × w × h
Measuring space	7	the year based on 35 weeks of		 Know the meaning of faces, edges and vertices
Investigating angles	3	to arching and Awards for		Know the names of special triangles and quadrilaterals
Calculating fractions, decimals and percentages	1	teaching and 4 weeks for		Know how to work out measures of central tendency
Solving equations and inequalities	5			Know how to calculate the range
Calculating space	5	Assessment, Enrichment and		
Mathematical movement	7			
Presentation of data	6	Intervention / Preventing the		
Measuring data Total:	7	Gap	eet	

Maths Calendar

Week 1	W	eek 2	Week 3	W	eek 4	Week 5		Week 6	Week 7	We	eek 8	w	leek 9	Week 10	Week	11	Week 12	Week	13
Nur	nbers ar	nd the num	ber system				-	Calculating				Che	cking	Counting a	nd compari	ng	Visualis	ing etc	
		7M1 BAM						7M2 BAM				7M6	BAM				7M13	BAM	
Week 14	We	ek 15	Week 16	W	eek 17	Week 18		Week 19	Week 20	We	ek 21	We	eek 22	Week 23	Week	24	Week 25	Week	26
Assess and en	rich	Propert	ies of shapes	Alge	ebraic profi	ciency: tinkering		Exploring FDP	Prop'l rea	soning	Patterr	is	Me	easuring space	Ar	ngles	Calcula	ating FDP	
				7M7	BAM, 7M8	BAM, 7M9 BAM		7M3 BAM											
Week 27	We	ek 28	Week 29	W	eek 30	Week 31		Week 32	Week 33	We	ek 34	We	eek 35	Week 36	Week	37	Week 38	Week	39
Assessment		Calculat	ting FDP cont'd		Solving	g equations	Ca	alculating space	Mather	matical m	ovement		Present	ation of data	N	Aeasurin	g data	Assessm	ient
		7M4 B/	AM, 7M5 BAM		7M	10 BAM		7M12 BAM		7M11 BA	м								

Based on 7 maths lessons per fortnight, with at least 35 'quality teaching' weeks per year

Unit Overview

www.kangaroomaths.com

The Big Picture: Number and Place Value progression map

- use the concepts and vocabulary of prime numbers, factors (divisors), multiples, common factors, common multiples, highest common factor and lowest common multiple
- use positive integer powers and associated real roots (square, cube and higher), recognise powers of 2, 3, 4, 5
- recognise and use sequences of triangular, square and cube numbers, simple arithmetic progressions

'Key concepts' taken from the DfE National Curriculum Programme of Study (Stages 1 to 6) and DfE GCSE Subject Content and Assessment Objectives (Stages 7 to 11).
Statements grouped to create units for the medium term plans.
Progression maps built to show the big picture from Years 1 to 11.

To see the connections to previous and future learning, '**progression maps**' for each defined area of mathematics can be found by following these links.

Key concepts (GCSE subject content statements)

•

- use the concepts and vocabulary of prime numbers, factors (divisors), multiples, common factors, common multiples, highest common factor and lowest common multiple .
- ٠ use positive integer powers and associated real roots (square, cube and higher), recognise powers of 2, 3, 4, 5
- recognise and use sequences of triangular, square and cube numbers, simple arithmetic progressions

Return to overview

The Big Picture: Number and Place Value progression map

Possible themes Possible key learning points Solve problems using common factors and highest common factors Find common factors of numbers Exploring prime numbers Find the highest common factor of numbers, including co-prime Solve problems using common multiples and lowest common multiples · Recognise and solve problems involving highest common factor Explore powers and roots Find prime numbers and test numbers to see if they are prime Find common multiples of numbers Recognise and solve problems involving the lowest common multiple Read, write and evaluate powers Recognise and use triangular, square and cube numbers Define and find square roots (including using the √ symbol) • Define and find cube roots (including using the ∛□ symbol), including the use of a scientific calculator Define and find other roots (including using the a VC symbols), including the use of a scientific calculator Recognise and use simple arithmetic progressions Possible themes identified that describe the big ideas to be

See Embedding Formative Assessment, Wiliam, 2011 and Visible Learning for Teachers, Hattie, 2011

explored in this unit

Possible key learning points identified that describe the process of learning. They are examples of what the teacher might select for their class. These could also be thought of as learning objectives.

12 lessons

Key concepts (GCSE subject content statements)

- use the concepts and vocabulary of prime numbers, factors (divisors), multiples, common factors, common multiples, highest common factor and lowest common multiple
- use positive integer powers and associated real roots (square, cube and higher), recognise powers of 2, 3, 4, 5
- recognise and use sequences of triangular, square and cube numbers, simple arithmetic progressions

Possible key learning points

- Find common factors of numbers
- Find the highest common factor of numbers, including co-prime
- Recognise and solve problems involving highest common factor
- Find prime numbers and test numbers to see if they are prime
- Find common multiples of numbers
- · Recognise and solve problems involving the lowest common multiple
- Read, write and evaluate powers
- Recognise and use triangular, square and cube numbers
- Define and find square roots (including using the √□ symbol)
- Define and find cube roots (including using the Vision symbol), including the use of a scientific calculator
- Define and find other roots (including using the a VIII symbols), including the use of a scientific calculator
- · Recognise and use simple arithmetic progressions

Prerequisites

Possible themes

Exploring prime numbers

Explore powers and roots

٠

- ٠ Know how to find common multiples of two given numbers
- ٠ Know how to find common factors of two given numbers
- ٠ Recall multiplication facts to 12 × 12 and associated division facts

Solve problems using common factors and highest common factors

Solve problems using common multiples and lowest common multiples

Bring on the Maths': Moving on up! Number and Place Value: #6

Prerequisites for the suggested key learning points.

12 lessons

Return to overview

Key concepts (GCSE subject content statements)

- use the concepts and vocabulary of prime numbers, factors (divisors), multiples, common factors, common multiples, highest common factor and lowest common multiple
- use positive integer powers and associated real roots (square, cube and higher), recognise powers of 2, 3, 4, 5 •
- recognise and use sequences of triangular, square and cube numbers, simple arithmetic progressions •

Return to overview

			Return to overview
Possible themes	Ро	ssible key learning points	
 Solve problems using common factors and highest common factors Exploring prime numbers Solve problems using common multiples and lowest common multiples Explore powers and roots 			living highest common factor bers to see if they are prime s living the lowest common multiple re and cube numbers ding using the $\sqrt{11}$ symbol) ng using the $\sqrt{11}$ symbol), including the use of a scientific calculator ing using the a $\sqrt{11}$ symbol), including the use of a scientific calculator
Prerequisites	Mathematical language		
 Know how to find common multiples of two given numbers Know how to find common factors of two given numbers Recall multiplication facts to 12 × 12 and associated division facts Bring on the Maths': Moving on up! Number and Place Value: #6	((Lowest) common) multiple and LCM ((Highest) common) factor and HCF Power (Square and cube) root Triangular number, Square number, Cube number, Prime number Linear sequence Notation Index notation: e.g. 5 ³ is read as '5 to the power of 3' and means '3 lots of 5 multiplied together' Radical notation: e.g. v49 is generally read as 'the square root of 49' and means 'the positive square root of 49'; ³ v8 means 'the cube root of 8'		
The mathematical includes key voca	• •		
and information a	bout the notation	on	
that students nee	d to understand	d	

that students need to understand

Key concepts (GCSE subject content statements)

The Big Picture: Number and Place Value progression map

12 lessons

- use the concepts and vocabulary of prime numbers, factors (divisors), multiples, common factors, common multiples, highest common factor and lowest common multiple
- use positive integer powers and associated real roots (square, cube and higher), recognise powers of 2, 3, 4, 5
- recognise and use sequences of triangular, square and cube numbers, simple arithmetic progressions

		Return to overview			
Possible themes	Possible key learning points	Possible key learning points			
 Solve problems using common factors and highest common factors Exploring prime numbers Solve problems using common multiples and lowest common multiples Explore powers and roots 	 Read, write and evaluate powers Recognise and use triangular, squ Define and find square roots (inclu Define and find cube roots (inclu 	of numbers, including co-prime volving highest common factor nbers to see if they are prime ers volving the lowest common multiple uare and cube numbers luding using the √□ symbol) ding using the √□ symbol), including the use of a scientific calculator iding using the a √□ symbols), including the use of a scientific calculator			
Prerequisites	Mathematical language	Pedagogical notes			
Know how to find common factors of two given numbers Recall multiplication facts to 12 × 12 and associated division facts Bring on the Maths': Moving on up!	((Lowest) common) multiple and LCM ((Highest) common) factor and HCF Power (Square and cube) root Triangular number, Square number, Cube number, Prime number Linear sequence	Pupils need to know how to use a scientific calculator to work out powers and roots. Note that while the square root symbol (V) refers to the positive square root of a number, every positive number has a negative square root too. NCETM: Departmental workshop: Index Numbers NCETM: Glossary			
Pedagogical notes a all, but particularly be specialists and ine teachers Common c	neficial for non-	Common approaches The following definition of a prime number should be used in order to minimise confusion about 1: A prime number is a number with exactly two factors. Every classroom has a set of <u>number classification posters</u> on the wall ressing comments in Ofsted's			

teachers. **Common approaches** are shown in italics as they should be noted in a scheme of work but could be personalised to a school. Addressing comments in Ofsted's summary reports, 'Understanding the Score' (2007) and 'Made to Measure' (2010)

Key concepts (GCSE subject content statements)

- use the concepts and vocabulary of prime numbers, factors (divisors), multiples, common factors, common multiples, highest common factor and lowest common multiple
- use positive integer powers and associated real roots (square, cube and higher), recognise powers of 2, 3, 4, 5
- recognise and use sequences of triangular, square and cube numbers, simple arithmetic progressions

Possible themes Possible key learning points Solve problems using common factors and highest common factors · Find common factors of numbers Exploring prime numbers · Find the highest common factor of numbers, including co-prime Solve problems using common multiples and lowest common multiples Recognise and solve problems involving Explore powers and roots Find prime numbers and test numbers See Mathematics Survey Visits: Find common multiples of number Recognise and solve problems inv Read, write and evaluate powers Quality of Teachina in Recognise and use triangular, squ Mathematics (supplementary Define and find square roots (include) Define and find cube roots (includ subject-specific quidance), er roots (inclu Possible misconceptions highlight mple arithme Ofsted, 2014 Prerequisites Know how to find common m some incorrect thinking that Know how to find common fa Note that while the square root symbol (v) refers to the positive square root ٠ Recall multiplication facts to students might demonstrate (not of a number, every positive number has a negative square root too. NCETM: Departmental workshop: Index Numbers Bring on the Maths': Moving on NCETM: Glossary Number and Place Value: #6 mistakes). Thought should be Common approaches '3 lots of 5 The following definition of a prime number should be used in order to given as to how to exploit these. minimise confusion about 1: A prime number is a number with exactly two f 49' and factors. ot of 8' Every classroom has a set of number classification posters on the wall Possible misconceptions Many pupils believe that 1 is a prime number - a misconception which can arise if the definition is taken as 'a number which is divisible by itself See Embedding Formative and 1' A common misconception is to believe that 53 = 5 × 3 = 15 Assessment, Wiliam, 2011 See pedagogical note about the square root symbol too and Learning from Mistakes and Misconceptions, (Standards Unit: Improving Learning in Mathematics)

12 lessons

Return to overview

Key concepts (GCSE subject content statements)

use the concepts and vocabulary of prime numbers, factors (divisors), multiples, common factors, common multiples, highest common factor and lowest common multiple

M ((L

((H Po (Sc

Tri

Lin

Nol Ind

- use positive integer powers and associated real roots (square, cube and higher), recognise powers of 2, 3, 4, 5 •
- recognise and use sequences of triangular, square and cube numbers, simple arithmetic progressions .

Possible themes

- Solve problems using common factors and highest common factors
- Exploring prime numbers
- Solve problems using common multiples and lowest common multiples
- Explore powers and roots

Possible key learning points

- Find common factors of numbers
- Find the highest common factor of numbers, including co-prime
- Recognise and solve problems involving highest common factor
- Find prime numbers and test numbers to see if they are prime
- Find common multiples of numbers
- Recognise and solve problems involving the lowest common multiple
- Read, write and evaluate powers
- Recognise and use triangular, square and cube numbers

Prerequisites

- ٠ Know how to find common multiples of two given numbers
- Know how to find common factors of two given numbers
- Recall multiplication facts to 12 × 12 and associated division facts

Bring on the Maths': Moving on up!

Number and Place Value: #6

Reasoning opportunities and probing questions

- When using Eratosthenes sieve to identify prime numbers, why is there no need to go further than the multiples of 7? If this method was extended to test prime numbers up to 200, how far would you need to go? Convince me.
- Kenny says '20 is a square number because 10² = 20'. Explain why Kenny is wrong. Kenny is partially correct. How could he change his statement so that it is fully correct?
- Always / Sometimes / Never: The lowest common multiple of two numbers is found by multiplying the two numbers together.

g the use of a scientific calculator **Reasoning opportunities** and ding the use of a scientific calculator probing questions utilise question stems suggested as particularly effective following research by John Mason and Anne Watson number should be used in order to frime number is a number with exactly two the square root of 49' and

V8 means 'the cube root of 8'

factors.

Every classroom has a set of number classification posters on the wall

Possible misconceptions

 Many pupils believe that 1 is a prime number – a misconception which can arise if the definition is taken as 'a number which is divisible by itself and 1'

- A common misconception is to believe that 5³ = 5 × 3 = 15
- See pedagogical note about the square root symbol too

See Questions and Prompts for Mathematical Thinking, Watson & Mason, 1998, (ATM)

Stage 7: Page 1

12 lessons

Return to overview

The Big Picture: Number and Place Value progression map

scientific calculator to work out powers and

mbol (v) refers to the positive square root er has a negative square root too. Index Numbers

multi Radical notation: e means 'the posi

Key concepts (GCSE subject content statements)

• use the concepts and vocabulary of prime numbers, factors (divisors), multiples, common factors, common multiples, highest common factor and lowest common multiple

KM: 7M1 BAM Task

- use positive integer powers and associated real roots (square, cube and higher), recognise powers of 2, 3, 4, 5
- · recognise and use sequences of triangular, square and cube numbers, simple arithmetic progressions

Return to overview

The Big Picture: Number and Place Value progression map

Possible themes	Possible key learning points				
 Solve problems using common factors and highest common factors Exploring prime numbers Solve problems using common multiples and lowest common multiples Explore powers and roots Suggested activities including links to carefully choser resources including	 Recognise and solve problems invol Find prime numbers and test numb Find common multiples of numbers Recognise and solve problems invol Read, write and evaluate powers Recognise and use triangular, squar Define and find square roots (includin) Define and find cube roots (includin) 	 Find common factors of numbers Find the highest common factor of numbers, including co-prime Recognise and solve problems involving highest common factor Find prime numbers and test numbers to see if they are prime Find common multiples of numbers Recognise and solve problems involving the lowest common multiple 			
kangaroomaths.com, nrich.maths.org and ncetm.org.uk	mon) multiple and LCM mon) factor and HCF ube) root nber, Square number, Cube number, Prime number ce ndex notation: e.g. 5 ³ is read as '5 to the power of 3' and means '3 lots of 5 ultiplied together' dical notation: e.g. V49 is generally read as 'the square root of 49' and	Pedagogical notes Pupils need to know how to use a scientific calculator to work out powers and roots. Note that while the square root symbol (V) refers to the positive square root of a number, every positive number has a negative square root too. NCETM: Departmental workshop: Index Numbers NCETM: Glossary Common approaches The following definition of a prime number should be used in order to minimise confusion about 1: A prime number is a number with exactly two factors.			
Reasoning opportunities and probing questions		Every classroom has a set of <u>number classification posters</u> on the wall Possible misconceptions			
 When using Eratosthenes sieve to identify prime numbers, why is there no need to go further than the multiples of 7? If this method was extended to test prime numbers up to 200, how far would you need to go? Convince me. Kenny says '20 is a square number because 10² = 20'. Explain why Kenny is wrong. Kenny is partially correct. How could he change his statement so that it is fully correct? Always / Sometimes / Never: The lowest common multiple of two numbers is found by multiplying the two numbers together. 	KM: Perfect numbers: includes use of factors, primes and powers KM: Exploring primes activities: Factors of square numbers; Mersenne primes; LCM sequence; n ² and (n + 1) ² ; n ² and n ² + n; n ² + 1; n! + 1; n! - 1; x ² +	 Many pupils believe that 1 is a prime number – a misconception which can arise if the definition is taken as 'a number which is divisible by itself and 1' A common misconception is to believe that 5³ = 5 × 3 = 15 See pedagogical note about the square root symbol too 			

www.kangaroomaths.com

12 lessons

Key concepts (GCSE subject content statements)

Possible themes

- use the concepts and vocabulary of prime numbers, factors (divisors), multiples, common factors, common multiples, highest common factor and lowest common multiple
- use positive integer powers and associated real roots (square, cube and higher), recognise powers of 2, 3, 4, 5
- · recognise and use sequences of triangular, square and cube numbers, simple arithmetic progressions

Return to overview

 Recognise and solve problems inv Find prime numbers and test num Find common multiples of number Recognise and solve problems inv Read, write and evaluate powers Recognise and use triangular, squ. Define and find square roots (includ Define and find other roots (includ) 	 Find the highest common factor of numbers, including co-prime Recognise and solve problems involving highest common factor Find prime numbers and test numbers to see if they are prime Find common multiples of numbers Recognise and solve problems involving the lowest common multiple 			
Mathematical language	Pedagogical notes			
((Lowest) common) multiple and LCM ((Highest) common) factor and HCF Power (Square and cube) root Triangular number, Square number, Cube number, Prime number Linear sequence Notation Index notation: e.g. 5 ³ is read as '5 to the power of 3' and means '3 lots of 5 multiplied together' Radical notation: e.g. V49 is generally read as 'the square root of 49' and means 'the positive square root of 49'; ³ V8 means 'the cube root of 8'	Pupils need to know how to use a scientific calculator to work out powers and roots. Note that while the square root symbol (V) refers to the positive square root of a number, every positive number has a negative square root too. NCETM: <u>Departmental workshop: Index Numbers</u> NCETM: <u>Glossary</u> Common approaches The following definition of a prime number should be used in order to minimise confusion about 1: A prime number is a number with exactly two factors. Every classroom has a set of <u>number classification posters</u> on the wall			
Suggested activities	Possible misconceptions			
x +41 KM: Use the method of <u>Eratosthenes' sieve</u> to identify prime numbers, but on a grid 6 across by 17 down instead. What do you notice? KM: <u>Square number puzzle</u> KM: <u>History and Culture: Goldbach's Conjectures</u> NRICH: <u>Factors and multiples</u> NRICH: <u>Powers and roots</u> Learning review	 Many pupils believe that 1 is a prime number – a misconception which can arise if the definition is taken as 'a number which is divisible by itself and 1' A common misconception is to believe that 5³ = 5 × 3 = 15 See pedagogical note about the square root symbol too 			
	 Find the highest common factor o Recognise and solve problems invo Find prime numbers and test num Find common multiples of number Recognise and solve problems invo Read, write and evaluate powers Recognise and use triangular, squate Define and find square roots (includent) Define and find cube roots (includent) Define and find other roots (includent) Define and find other roots (includent) Recognise and use simple arithmet Mothermotical language (Lowest) common) multiple and LCM (Highest) common) factor and HCF Power (Square and cube) root Triangular number, Square number, Cube number, Prime number Linear sequence Notation Index notation: e.g. 5³ is read as '5 to the power of 3' and means '3 lots of 5 multiplied together' Radical notation: e.g. v49 is generally read as 'the square root of 49' and means 'the positive square root of 49'; ³v8 means 'the cube root of 8' Suggested activities Factors of square numbers; Mersenne primes; LCM sequence; n² and (n + 1)²; n² and n² + n; n² + 1; n! + 1; n! - 1; x² + x + 41 KM: Use the method of Eratosthenes' sieve to identify prime numbers, but on a grid 6 across by 17 down instead. What do you notice? KM: <u>Square number puzzle</u> KM: <u>History and Culture: Goldbach's Conjectures</u> NRICH: <u>Powers and roots</u> 			

Possible key learning points

12 lessons

Pitch of the Secondary Schemes of Work

www.kangaroomaths.com

Stand	lard cor	ntent	<u>Ur</u>	derline	d conter	nt	Bold c	ontent
1	2	3	4	5	6	7	8	9
ur	ndation	tier						
					Hi	gher tie	er	

Diagram from www.ocr.org.uk/gcsemaths

Scheme of Work	Source of content		
Stage 5	Year 5 Programme of Study		
Stage 6	Year 6 Programme of Study		
Stage 7	Standard content: 9 – 1 GCSE Specification		
Stage 8	Standard content: 9 – 1 GCSE Specification		
Stage 9	Underlined content: 9 – 1 GCSE Specification		
Stage 10	Underlined/Bold content: 9 – 1 GCSE Specification		
Stage 11	Bold content: 9 – 1 GCSE Specification		